### Revisiting several problems and algorithms in Continuous Location with l_p norms

**El Haj Ben Ali, A ***(Universidad de Sevilla)*

Friday 19 July 2013, 10:30-11:00

Seminar Room 1, Newton Institute

#### Abstract

This work addresses the general continuous single facility location problems in finite dimension spaces under possibly diferent l_p norms, p>=1, in the demand points. We analyze the dificulty of this family of problems and revisit convergence properties of some well-known algorithms. The ultimate goal is to provide a common approach to solve the family of continuous l_p ordered median location problems in dimension d (including of course the l_p minisum or Fermat-Weber location problem for any p>=1). We prove that this approach has a polynomial worst case complexity for monotone lambda weights and can be also applied to constrained and even non-convex problems.

#### Presentation

#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

## Comments

Start the discussion!