RMA Seminar List
for period 26 January to 16 July 2004
Thursday 29 January | ||
15:00-16:00 | Stoltz, M (Tuebingen) | |
Random matrices and invariant theory | Sem 1 | |
16:30-17:30 | Strombergsson, A (Uppsala) | |
Small solutions to linear congruences and Hecke equidistribution | Sem 1 |
Thursday 05 February | ||
15:00-16:00 | Watkins, M (Pennsylvania State) | |
Solving systems of polynomial equations via multidimensional p-adic Newton iteration | Sem 1 | |
16:30-17:30 | Hughes, C (AIM) | |
Moments of the Riemann Zeta function and random matrix theory "theory" | Sem 1 |
Monday 09 February | ||
11:00-11:45 | Birch, B, Swinnerton-Dyer, P (Oxford, Cambridge) | |
The origins of the Birch/Swinnerton-Dyer conjecture: some personal reminiscences | Sem 1 | |
12:00-12:45 | Silverberg, A (Ohio State) | |
Ranks of elliptic curves | Sem 1 | |
14:30-15:15 | Delaunay, C (Ecole Poly. Federale de Lausanne) | |
Heuristics on Class groups and on Tate-Shafarevich groups | Sem 1 | |
15:30-16:15 | Rubinstein, M (Waterloo, Canada) | |
Moments, L-values & Ranks | Sem 1 | |
16:45-17:30 | David, C (Concordia) | |
Vanishing of L-functions of elliptic curves over number fields | Sem 1 |
Tuesday 10 February | ||
09:30-18:00 | Snaith, N (Bristol) | |
Ranks of elliptic curves & random matrix theory | Sem 1 | |
11:15-18:00 | Rubin, K (Stanford) | |
Constructing rank 2 & rank 3 twists | Sem 1 |
Wednesday 11 February | ||
11:30-18:00 | Rubinstein, M (Waterloo, Canada) | |
Numerical evidence | Sem 1 |
Friday 13 February | ||
09:00-18:00 | Ulmer, D (Arizona) | |
Heuristics for large rank | Sem 1 | |
10:00-18:00 | Watkins, M (Pennsylvania State) | |
Numerical evidence | Sem 1 | |
14:30-18:00 | Hughes, C (AIM) | |
Using RMT to predict large values | Sem 1 |
Thursday 19 February | ||
14:30-15:30 | Gonek, S (Rochester) | |
Mean value theorems and the zeros of the zeta function | Sem 1 | |
16:00-17:00 | Farmer, D (American Institute of Mathematics) | |
Differentiation evens out zero spacings | Sem 1 |
Thursday 26 February | ||
16:00-17:00 | Koyama, S | |
Multiple zeta functions | Sem 1 |
Thursday 04 March | ||
14:30-15:30 | Keating, J (Bristol) | |
Negative moments | Sem 1 | |
16:00-17:00 | Gamburd, A (Stanford) | |
Random matrices, magic squares and the Riemann zeta function | Sem 1 |
Thursday 11 March | ||
16:00-17:00 | Smolyarenko, I (Cambridge) | |
Parametric random matrix theory | Sem 1 |
Thursday 18 March | ||
14:30-15:30 | Vaughan, R (Penn State) | |
Mean value theorems for primes in arithmetic progressions | Sem 2 | |
16:00-17:00 | Motohashi, Y (Nihon) | |
Feasibility of a unified treatment of mean values of automorphic L-functions | Sem 2 |
Wednesday 24 March | ||
16:00-17:00 | Bohigas, O (Orsay) | |
Spectral properties of distance matrices | Sem 2 |
Thursday 25 March | ||
16:00-17:00 | Fujii, A (Rikkyo University) | |
Some problems on the distribution of the zeros of the Riemann zeta function | Sem 1 |
Monday 29 March | ||
10:00-11:00 | Heath-Brown, R (Oxford) | |
Prime number theory & the Riemann zeta-function I | Sem 1 | |
11:30-12:30 | Fyodorov, Y (Brunel) | |
Gaussian ensembles of random matrices I | Sem 1 | |
14:00-15:00 | Heath-Brown, R (Oxford) | |
Prime number theory \& the Riemann zeta-function II | Sem 1 | |
15:30-16:30 | Fyodorov, Y (Brunel) | |
Gaussian ensembles of random matrices II | Sem 1 | |
16:30-17:30 | Michel, P (Montpellier II) | |
Artin L-functions | Sem 1 |
Tuesday 30 March | ||
09:00-10:00 | Heath-Brown, R (Oxford) | |
Prime number theory & the Riemann zeta-function III | Sem 1 | |
10:00-11:00 | Michel, P (Montpellier II) | |
Elliptic curves | Sem 1 | |
11:30-12:30 | Fyodorov, Y (Brunel) | |
Gaussian ensembles of random matrices III | Sem 1 | |
14:30-15:30 | Heath-Brown, R (Oxford) | |
Prime number theory & the Riemann zeta-function IV | Sem 1 | |
16:00-17:00 | Fyodorov, Y (Brunel) | |
Gaussian ensembles of random matrices IV | Sem 1 | |
17:00-18:00 | Goldston, DA (San Jose State) | |
Pair correlation of zeros of the Riemann zeta-function and prime numbers I | Sem 1 |
Wednesday 31 March | ||
09:00-10:00 | Goldston, DA (San Jose State) | |
Pair correlation of zeros of the Riemann zeta-function and prime numbers II | Sem 1 | |
10:00-11:00 | Bogomolny, EB (Paris Sud) | |
Heuristic derivation of the n-point correlation function for the Riemann zeros I | Sem 1 | |
11:30-12:30 | Michel, P (Montpellier II) | |
Modular forms | Sem 1 |
Thursday 01 April | ||
09:00-10:00 | Heath-Brown, R (Oxford) | |
Prime number theory \& the Riemann zeta-function V | Sem 1 | |
10:00-11:00 | Goldston, DA (San Jose State) | |
Pair correlation of zeros of the Riemann zeta-function and prime numbers III | Sem 1 | |
11:30-12:30 | Fyodorov, Y (Brunel) | |
Gaussian ensembles of random matrices V | Sem 1 | |
14:00-15:00 | Bogomolny, EB (Paris Sud) | |
Heuristic derivation of the n-point correlation function for the Riemann zeros II | Sem 1 | |
15:30-16:30 | Goldston, DA (San Jose State) | |
Pair correlation of zeros of the Riemann zeta-function and prime numbers IV | Sem 1 | |
16:30-17:30 | Michel, P (Montpellier II) | |
L-functions over functions fields | Sem 1 |
Friday 02 April | ||
09:00-10:00 | Fyodorov, Y (Brunel) | |
Gaussian ensembles of random matrices VI | Sem 1 | |
10:00-11:00 | Heath-Brown, R (Oxford) | |
Prime number theory \& the Riemann zeta-function VI | Sem 1 | |
11:30-12:30 | Bogomolny, EB (Paris Sud) | |
Heuristic derivation of the n-point correlation function for the Riemann zeros III | Sem 1 | |
14:00-15:00 | Bohigas, OG (Paris Sud) | |
Compund nucleus resonances, random matrices, quantum chaos | Sem 1 | |
15:30-16:30 | Berry, MV (Bristol) | |
Quantum chaology and zeta | Sem 1 |
Saturday 03 April | ||
10:00-11:00 | Gonek, S (Rochester) | |
Mean values & zeros of the zeta function | Sem 1 | |
11:30-12:30 | Basor, E (California Polytechnic State) | |
Toeplitz determinants & connections to random matrices I | Sem 1 | |
13:30-14:30 | Forrester, P (Melbourne) | |
Spacing distributions for random matrix ensembles I | Sem 1 |
Monday 05 April | ||
09:00-10:00 | Keating, JP (Bristol) | |
RMT moment calculations I | Sem 1 | |
10:00-11:00 | Conrey, B (AIM) | |
Statistics of low-lying zeros of L-function and random matrix theory I | Sem 1 | |
11:30-12:30 | Farmer, DW (AIM) | |
Low moments of the Riemann zeta function | Sem 1 | |
14:00-15:00 | Keating, JP (Bristol) | |
RMT moment calculations II | Sem 1 | |
15:30-16:30 | Hughes, C (AIM) | |
Derivatives of the Riemann zeta function | Sem 1 | |
16:30-17:30 | Rubinstein, M (Waterloo, Canada) | |
Computational methods for L-functions I | Sem 1 |
Tuesday 06 April | ||
09:00-10:00 | Basor, E (California Poltechnic State) | |
Toeplitz determinants \& connections to random matrices II | Sem 1 | |
10:00-11:00 | Forrester, P (Melbourne) | |
Spacing distributions for random matrix ensembles II | Sem 1 | |
11:30-12:30 | Conrey, B (AIM) | |
Statistics of low-lying zeros of L-function and random matrix theory II | Sem 1 | |
14:00-15:00 | Rubinstein, M (Waterloo, Canada) | |
Computational methods for L-functions II | Sem 1 | |
15:30-16:30 | Conrey, B (AIM) | |
Statistics of low-lying zeros of L-function and random matrix theory III | Sem 1 | |
16:30-17:30 | Basor, E (California Polytechnic State) | |
Toeplitz determinants \& connections to random matrices III | Sem 1 |
Wednesday 07 April | ||
09:00-10:00 | Gonek, S (Rochester) | |
Mean values of Dirichlet polynomials \& applications | Sem 1 | |
10:00-11:00 | Conrey, B (AIM) | |
Statistics of low-lying zeros of L-function and random matrix theory IV | Sem 1 | |
11:30-12:30 | Rubinstein, M (Waterloo, Canada) | |
Computational methods for L-functions III | Sem 1 | |
14:00-15:00 | Hughes, C (AIM) | |
A new model for the Riemann zeta function | Sem 1 | |
15:30-16:30 | Forrester, P (Melbourne) | |
Spacing distributions for random matrix ensembles III | Sem 1 |
Thursday 08 April | ||
09:00-10:00 | Hughes, C (AIM) | |
Mock-Gaussian behaviour | Sem 1 | |
10:00-11:00 | Farmer, DW (AIM) | |
Families \& conjectures for moments of L-functions | Sem 1 | |
11:30-12:30 | Keating, JP (Bristol) | |
RMT moment calculations III | Sem 1 |
Thursday 15 April | ||
14:30-15:30 | Leboeuf, P (Orsay) | |
The partition function p(n) and the many-body density of states | Sem 1 | |
16:00-17:00 | Forrester, P (Melbourne) | |
Applications and generalisations of Fisher-Hartwig asymptotics | Sem 1 |
Thursday 29 April | ||
14:30-15:30 | Zirnbauer, M (Koln) | |
From random matrices to supermanifolds | Sem 2 | |
16:00-17:00 | Harnad, J (Montreal) | |
Max integrals as isomonodromic tau functi | Sem 2 |
Tuesday 11 May | ||
14:30-15:30 | Farahmand, K (Ulster) | |
Random polynomials | Sem 1 |
Thursday 13 May | ||
16:00-17:00 | Khoruzhenko, B (London) | |
Random determinants and eigenvalue distributions in the complex plane | Sem 1 |
Tuesday 18 May | ||
09:00-10:00 | Biane, P (ENS Paris) | |
Brownian motion in a Weyl chamber and GUE | Sem 1 | |
10:00-11:00 | Goetze, F (Bielefeld) | |
Asymptotic spectral approximations | Sem 1 | |
10:30-11:00 | Khuruzhenko, B (QMUL) | |
Moments of spectral determinants of random complex matrices | Sem 1 | |
13:00-14:00 | Widom, H (UC Santa Cruz) | |
Differencial equations for Dyson processes | Sem 1 | |
14:00-15:00 | Zirnbauer, M (Koln) | |
Granular Bosanization | Sem 1 |
Wednesday 19 May | ||
09:00-10:00 | Collins, B (Kyoto) | |
Integration over classical compact groups with applications to free probability and matrix integrals | Sem 1 | |
10:00-11:00 | Zeitouni, O (Minneapolis) | |
Central limit theorums for traces - a combinatorial and concentration approach | Sem 1 |
Thursday 20 May | ||
09:00-10:00 | Donati-Martin, C (Paris VI) | |
Some properties of Wishart processes | Sem 1 | |
10:00-11:00 | Hudson, R (Nottingham Trent) | |
Some noncommutative central limit theorums | Sem 1 | |
11:00-12:00 | Petz, D (Budapest) | |
Free transportation cost inequalities via random matrix approximation | Sem 1 | |
12:00-13:00 | Stolz, M (Bochum) | |
Examples of dual pairs in random matrix theory | Sem 1 | |
13:00-14:00 | Warren, J (Warwick) | |
Dyson's Brownian motion, interlacing and intertwining | Sem 1 |
Friday 21 May | ||
09:00-10:00 | Doumerc, Y (Toulouse) | |
Exit problems associated with finite reflection groups | Sem 1 | |
10:00-11:00 | Fyodorov, Y (Brunel) | |
Complexity of random energy landscapes, glass transition and absolute value of spectral determinant of random matrices | Sem 1 | |
11:00-12:00 | Imamura, T (Tokyo) | |
Fluctuations of the 1D polynuclear growth model with external sources | Sem 1 | |
12:00-13:00 | Johansson, K (Stockholm) | |
Universality of distributions from random matrix theory | Sem 1 | |
13:00-14:00 | Reffy, J (Budapest) | |
Asymptotics of Haar unitaries and their truncation | Sem 1 |
Thursday 27 May | ||
14:30-15:30 | Suhov, Y (Cambridge) | |
Anderson localisation for multi-particle lattice systems | Sem 1 | |
16:00-17:00 | Ozluk, A (Maine) | |
Low-lying zeroes of quadratic L-functions | Sem 1 |
Thursday 03 June | ||
14:30-15:30 | Perez-Abreu, V (CIMAT) | |
Type G ensembles of random matrices | Sem 1 | |
16:00-17:00 | Duenez, E (Johns Hopkins Univesity) | |
Symmetry flipping in families of L-functions | Sem 1 |
Thursday 10 June | ||
16:00-17:00 | Pastur, L (Paris) | |
On the moments of traces of matrices of classical groups | Sem 1 |
Thursday 17 June | ||
14:30-15:30 | Soshnikov, A (UC Davis) | |
Poisson statistics for the largest eigenvalues in Wigner and sample covariance random matrices with heavy tails | Sem 1 | |
16:00-17:00 | Shahshahani, M (Niavaran, Tehran) | |
Triangulations of surfaces and distributing points on a sphere | Sem 1 |
Tuesday 22 June | ||
16:00-17:00 | Its, A (Indiana) | |
Painleve transcendents and random matrices | Sem 2 |
Thursday 24 June | ||
16:00-17:00 | Hejhal, D (Minnesota) | |
Multi-variate Gaussians for L-functions and applications to zeros | Sem 1 |
Monday 28 June | ||
09:30-10:25 | Sarnak, P (Princeton) | |
Quantum vesus classical fluctuations on the modular surface | Sem 1 | |
11:00-11:40 | De Bievre, S (Lille) | |
Long time propagation of coherent states under perturbed cat map dynamics | Sem 1 | |
11:50-12:30 | Mezzadri, F (Bristol) | |
Random matrix theory and entanglement in quantum spin chains | Sem 1 | |
14:30-15:25 | Nonnenmacher, S (CEA Saclay) | |
Evolution and constrains on scarring for (perturbed) cat maps | Sem 1 | |
16:00-16:40 | Hughes, C (AIM) | |
On the number of lattice points in a thin annulus | Sem 1 | |
16:50-17:30 | Anantharaman, N (Lyon) | |
The ``Quantum unique ergodicity" problem for anosov geodesic flows: an approach by entropy | Sem 1 |
Tuesday 29 June | ||
09:30-10:25 | Sieber, M (Bristol) | |
Semiclassical evidence for universal spectral correlations in quantum chaos | Sem 1 | |
11:00-11:40 | Schubert, R (Bristol) | |
Propagation of wavepackets for large times | Sem 1 | |
11:50-12:30 | Kurlberg, P (Chalmers) | |
On the distribution of matrix elements for the quantum cat map | Sem 1 | |
14:30-15:25 | Venkatesh, A (MIT) | |
Quantum chaos on locally symmetric spaces | Sem 1 | |
16:00-16:40 | Petridis, Y (New York) | |
On the remiainder in weyl's law for heisenberg manifolds | Sem 1 | |
16:50-17:30 | Müller, S (Essen) | |
Semiclassical foundation of universality in quantum chaos | Sem 1 |
Wednesday 30 June | ||
09:30-10:25 | Eskin, A (Chicago) | |
Classical dynamics of billiards in rational polygons | Sem 1 | |
11:00-11:40 | Degli Esposti, M (Bologna) | |
The triangle map: a model for quantum chaos | Sem 1 | |
11:50-12:30 | Keating, JP (Bristol) | |
Eigenfunction statistics for star graphs | Sem 1 |
Thursday 01 July | ||
09:30-10:25 | Rudnick, Z (Tel-Aviv) | |
A central limit theorem for the spectrum of the modular domain | Sem 1 | |
11:00-11:40 | Reznikov, A (Bar-IIan Univestity) | |
Subconvexity of L-functions and the uniqueness principle | Sem 1 | |
11:50-12:30 | Jakobson, D (McGill) | |
On distribution of zeros of Heine-Stieltjes polynomials | Sem 1 | |
14:30-15:25 | Zelditch, S (Johns Hopkins) | |
Complex zeros of real ergodic eigenfunctions | Sem 1 | |
16:00-16:40 | Toth, J (McGill) | |
Energy asymptotics for gaudin spin chains | Sem 1 |
Friday 02 July | ||
09:30-10:25 | Steiner, F (Ulm) | |
The cosmic microwave background and the shape of the Universe | Sem 1 | |
11:00-11:40 | Luo, W (Ohio) | |
Zeros of the derivative of a selberg zeta function | Sem 1 | |
11:50-12:30 | Strombergsson, A (Uppsala) | |
Numerical computations with the trace formula and the selberg eigenvalue conjecture | Sem 1 | |
14:30-15:25 | Zirnbauer, MR (Uni Koeln) | |
Granular bosonization (or Fyodorov meets SUSY) | Sem 1 | |
16:00-16:40 | Koyama, S (Keio) | |
The double Riemann zeta function | Sem 1 | |
16:50-17:30 | Gamburd, A (Stanford) | |
Expander graphs, random matrices and quantum chaos | Sem 1 |
Thursday 08 July | ||
14:30-15:30 | Granville, A (Montreal) | |
Uncertainty principles in arithmetic | Sem 1 | |
16:00-17:00 | Green, B (Univ of British Columbia) | |
Arithmetic progressions of primes | Sem 1 |
Monday 12 July | ||
11:00-11:45 | Hughes, C (AIM) | |
Mollified \& amplified moments: Some new theorems \& conjectures | Sem 1 | |
12:00-12:30 | Montgomery, H (Michigan) | |
Primes \& pair correlation of zeros | Sem 1 | |
14:30-15:00 | Ivic, A (Belgrade) | |
On the moments of Hecke series at central points | Sem 1 | |
15:00-15:30 | Jutila, M (Turku) | |
The twelth moment of central values of Hecke series | Sem 1 | |
16:00-16:45 | Diaconis, P (Stanford) | |
Testing random matrix theory vs the zeta zeros | Sem 1 | |
17:00-17:30 | Bump, D (Stanford) | |
Automorphic summation formulae and moments of zeta | Sem 1 | |
17:30-18:00 | Smolyarenko, I (Cambridge) | |
Parametric RMT, discrete symmetries, \& cross-correlations between zeros of L-functions | Sem 1 |
Tuesday 13 July | ||
09:30-10:20 | Kowalski, E (Bordeaux I) | |
A survey of elliptic curves | Sem 1 | |
11:00-11:45 | Soundararajan, K (Michigan) | |
Extreme values \& moments of L-functions | Sem 1 | |
12:00-12:30 | Booker, A (Paris-Sud) | |
Poles of L-functions \& the converse theorem | Sem 1 | |
14:30-15:20 | Sarnak, P (Princeton) | |
Perspectives on L functions and spectral theory | Sem 1 | |
16:00-16:45 | Keating, J (Bristol) | |
Negative moments | Sem 1 | |
20:30-18:00 | Lenstra Jr., H (Leiden) | |
Escher and the Droste effect | Sem 1 |
Wednesday 14 July | ||
09:30-10:20 | Ulmer, D (Arizona) | |
Introduction to function fields | Sem 1 | |
11:00-11:45 | Katz, N (Princeton) | |
Random matrix theory \& life over finite fields | Sem 1 | |
12:00-12:30 | Duenez, E (Texas) | |
Symmetry beyond root numbers: a GL(6) example (joint with S Miller) | Sem 1 |
Thursday 15 July | ||
09:30-10:20 | Rodriguez-Villegas, F (Texas) | |
Computing twisted central values of L-functions | Sem 1 | |
11:00-11:45 | Farmer, D (AIM) | |
The geometry of zeros | Sem 1 | |
12:00-12:30 | Nikeghbali, A (Pierre et Marie Curie) | |
Zeros of random polynomials \& linear combinations of random characteristic polynomials | Sem 1 | |
14:30-15:20 | Rubinstein, M (Waterloo) | |
Experiments in number theory \& random matrix theory | Sem 1 | |
16:00-16:45 | Gonek, S (Rochester) | |
A new statistical model of the Riemann zeta function | Sem 1 |
Friday 16 July | ||
09:30-10:20 | Gamburd, A (Stanford) | |
Applications of symmetric functions theory to random matrices | Sem 1 | |
11:00-11:45 | Zirnbauer, M (Köln) | |
Ratios of random characteristic polynomials from supersymmetry | Sem 1 | |
12:00-12:30 | David, C (Concordia) | |
Vanishing of L-functions of elliptic curves over number fields | Sem 1 | |
14:30-15:20 | Goldfeld, D (Columbia) | |
Multiple Dirichlet series, an historical survey | Sem 1 | |
16:00-16:45 | Snaith, N (Bristol) | |
Ratios of zeta functions \& characteristic polynomials | Sem 1 | |
17:00-17:30 | Perelli, A (Genova) | |
The Selberg class of L-functions: non-linear twists | Sem 1 | |
17:30-17:50 | Molteni, G (Milan) | |
Bounds at s=1 for an axiomatic class of L-functions | Sem 1 |
Other Seminars |
Seminars in the University National and International Scientific Research Meetings |