Skip to content

RMA Seminar List

for period 26 January to 16 July 2004

Thursday 29 January
15:00-16:00 Stoltz, M (Tuebingen)
  Random matrices and invariant theory Sem 1
16:30-17:30 Strombergsson, A (Uppsala)
  Small solutions to linear congruences and Hecke equidistribution Sem 1
Thursday 05 February
15:00-16:00 Watkins, M (Pennsylvania State)
  Solving systems of polynomial equations via multidimensional p-adic Newton iteration Sem 1
16:30-17:30 Hughes, C (AIM)
  Moments of the Riemann Zeta function and random matrix theory "theory" Sem 1
Monday 09 February
11:00-11:45 Birch, B, Swinnerton-Dyer, P (Oxford, Cambridge)
  The origins of the Birch/Swinnerton-Dyer conjecture: some personal reminiscences Sem 1
12:00-12:45 Silverberg, A (Ohio State)
  Ranks of elliptic curves Sem 1
14:30-15:15 Delaunay, C (Ecole Poly. Federale de Lausanne)
  Heuristics on Class groups and on Tate-Shafarevich groups Sem 1
15:30-16:15 Rubinstein, M (Waterloo, Canada)
  Moments, L-values & Ranks Sem 1
16:45-17:30 David, C (Concordia)
  Vanishing of L-functions of elliptic curves over number fields Sem 1
Tuesday 10 February
09:30-18:00 Snaith, N (Bristol)
  Ranks of elliptic curves & random matrix theory Sem 1
11:15-18:00 Rubin, K (Stanford)
  Constructing rank 2 & rank 3 twists Sem 1
Wednesday 11 February
11:30-18:00 Rubinstein, M (Waterloo, Canada)
  Numerical evidence Sem 1
Friday 13 February
09:00-18:00 Ulmer, D (Arizona)
  Heuristics for large rank Sem 1
10:00-18:00 Watkins, M (Pennsylvania State)
  Numerical evidence Sem 1
14:30-18:00 Hughes, C (AIM)
  Using RMT to predict large values Sem 1
Thursday 19 February
14:30-15:30 Gonek, S (Rochester)
  Mean value theorems and the zeros of the zeta function Sem 1
16:00-17:00 Farmer, D (American Institute of Mathematics)
  Differentiation evens out zero spacings Sem 1
Thursday 26 February
16:00-17:00 Koyama, S
  Multiple zeta functions Sem 1
Thursday 04 March
14:30-15:30 Keating, J (Bristol)
  Negative moments Sem 1
16:00-17:00 Gamburd, A (Stanford)
  Random matrices, magic squares and the Riemann zeta function Sem 1
Thursday 11 March
16:00-17:00 Smolyarenko, I (Cambridge)
  Parametric random matrix theory Sem 1
Thursday 18 March
14:30-15:30 Vaughan, R (Penn State)
  Mean value theorems for primes in arithmetic progressions Sem 2
16:00-17:00 Motohashi, Y (Nihon)
  Feasibility of a unified treatment of mean values of automorphic L-functions Sem 2
Wednesday 24 March
16:00-17:00 Bohigas, O (Orsay)
  Spectral properties of distance matrices Sem 2
Thursday 25 March
16:00-17:00 Fujii, A (Rikkyo University)
  Some problems on the distribution of the zeros of the Riemann zeta function Sem 1
Monday 29 March
10:00-11:00 Heath-Brown, R (Oxford)
  Prime number theory & the Riemann zeta-function I Sem 1
11:30-12:30 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices I Sem 1
14:00-15:00 Heath-Brown, R (Oxford)
  Prime number theory \& the Riemann zeta-function II Sem 1
15:30-16:30 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices II Sem 1
16:30-17:30 Michel, P (Montpellier II)
  Artin L-functions Sem 1
Tuesday 30 March
09:00-10:00 Heath-Brown, R (Oxford)
  Prime number theory & the Riemann zeta-function III Sem 1
10:00-11:00 Michel, P (Montpellier II)
  Elliptic curves Sem 1
11:30-12:30 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices III Sem 1
14:30-15:30 Heath-Brown, R (Oxford)
  Prime number theory & the Riemann zeta-function IV Sem 1
16:00-17:00 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices IV Sem 1
17:00-18:00 Goldston, DA (San Jose State)
  Pair correlation of zeros of the Riemann zeta-function and prime numbers I Sem 1
Wednesday 31 March
09:00-10:00 Goldston, DA (San Jose State)
  Pair correlation of zeros of the Riemann zeta-function and prime numbers II Sem 1
10:00-11:00 Bogomolny, EB (Paris Sud)
  Heuristic derivation of the n-point correlation function for the Riemann zeros I Sem 1
11:30-12:30 Michel, P (Montpellier II)
  Modular forms Sem 1
Thursday 01 April
09:00-10:00 Heath-Brown, R (Oxford)
  Prime number theory \& the Riemann zeta-function V Sem 1
10:00-11:00 Goldston, DA (San Jose State)
  Pair correlation of zeros of the Riemann zeta-function and prime numbers III Sem 1
11:30-12:30 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices V Sem 1
14:00-15:00 Bogomolny, EB (Paris Sud)
  Heuristic derivation of the n-point correlation function for the Riemann zeros II Sem 1
15:30-16:30 Goldston, DA (San Jose State)
  Pair correlation of zeros of the Riemann zeta-function and prime numbers IV Sem 1
16:30-17:30 Michel, P (Montpellier II)
  L-functions over functions fields Sem 1
Friday 02 April
09:00-10:00 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices VI Sem 1
10:00-11:00 Heath-Brown, R (Oxford)
  Prime number theory \& the Riemann zeta-function VI Sem 1
11:30-12:30 Bogomolny, EB (Paris Sud)
  Heuristic derivation of the n-point correlation function for the Riemann zeros III Sem 1
14:00-15:00 Bohigas, OG (Paris Sud)
  Compund nucleus resonances, random matrices, quantum chaos Sem 1
15:30-16:30 Berry, MV (Bristol)
  Quantum chaology and zeta Sem 1
Saturday 03 April
10:00-11:00 Gonek, S (Rochester)
  Mean values & zeros of the zeta function Sem 1
11:30-12:30 Basor, E (California Polytechnic State)
  Toeplitz determinants & connections to random matrices I Sem 1
13:30-14:30 Forrester, P (Melbourne)
  Spacing distributions for random matrix ensembles I Sem 1
Monday 05 April
09:00-10:00 Keating, JP (Bristol)
  RMT moment calculations I Sem 1
10:00-11:00 Conrey, B (AIM)
  Statistics of low-lying zeros of L-function and random matrix theory I Sem 1
11:30-12:30 Farmer, DW (AIM)
  Low moments of the Riemann zeta function Sem 1
14:00-15:00 Keating, JP (Bristol)
  RMT moment calculations II Sem 1
15:30-16:30 Hughes, C (AIM)
  Derivatives of the Riemann zeta function Sem 1
16:30-17:30 Rubinstein, M (Waterloo, Canada)
  Computational methods for L-functions I Sem 1
Tuesday 06 April
09:00-10:00 Basor, E (California Poltechnic State)
  Toeplitz determinants \& connections to random matrices II Sem 1
10:00-11:00 Forrester, P (Melbourne)
  Spacing distributions for random matrix ensembles II Sem 1
11:30-12:30 Conrey, B (AIM)
  Statistics of low-lying zeros of L-function and random matrix theory II Sem 1
14:00-15:00 Rubinstein, M (Waterloo, Canada)
  Computational methods for L-functions II Sem 1
15:30-16:30 Conrey, B (AIM)
  Statistics of low-lying zeros of L-function and random matrix theory III Sem 1
16:30-17:30 Basor, E (California Polytechnic State)
  Toeplitz determinants \& connections to random matrices III Sem 1
Wednesday 07 April
09:00-10:00 Gonek, S (Rochester)
  Mean values of Dirichlet polynomials \& applications Sem 1
10:00-11:00 Conrey, B (AIM)
  Statistics of low-lying zeros of L-function and random matrix theory IV Sem 1
11:30-12:30 Rubinstein, M (Waterloo, Canada)
  Computational methods for L-functions III Sem 1
14:00-15:00 Hughes, C (AIM)
  A new model for the Riemann zeta function Sem 1
15:30-16:30 Forrester, P (Melbourne)
  Spacing distributions for random matrix ensembles III Sem 1
Thursday 08 April
09:00-10:00 Hughes, C (AIM)
  Mock-Gaussian behaviour Sem 1
10:00-11:00 Farmer, DW (AIM)
  Families \& conjectures for moments of L-functions Sem 1
11:30-12:30 Keating, JP (Bristol)
  RMT moment calculations III Sem 1
Thursday 15 April
14:30-15:30 Leboeuf, P (Orsay)
  The partition function p(n) and the many-body density of states Sem 1
16:00-17:00 Forrester, P (Melbourne)
  Applications and generalisations of Fisher-Hartwig asymptotics Sem 1
Thursday 29 April
14:30-15:30 Zirnbauer, M (Koln)
  From random matrices to supermanifolds Sem 2
16:00-17:00 Harnad, J (Montreal)
  Max integrals as isomonodromic tau functi Sem 2
Tuesday 11 May
14:30-15:30 Farahmand, K (Ulster)
  Random polynomials Sem 1
Thursday 13 May
16:00-17:00 Khoruzhenko, B (London)
  Random determinants and eigenvalue distributions in the complex plane Sem 1
Tuesday 18 May
09:00-10:00 Biane, P (ENS Paris)
  Brownian motion in a Weyl chamber and GUE Sem 1
10:00-11:00 Goetze, F (Bielefeld)
  Asymptotic spectral approximations Sem 1
10:30-11:00 Khuruzhenko, B (QMUL)
  Moments of spectral determinants of random complex matrices Sem 1
13:00-14:00 Widom, H (UC Santa Cruz)
  Differencial equations for Dyson processes Sem 1
14:00-15:00 Zirnbauer, M (Koln)
  Granular Bosanization Sem 1
Wednesday 19 May
09:00-10:00 Collins, B (Kyoto)
  Integration over classical compact groups with applications to free probability and matrix integrals Sem 1
10:00-11:00 Zeitouni, O (Minneapolis)
  Central limit theorums for traces - a combinatorial and concentration approach Sem 1
Thursday 20 May
09:00-10:00 Donati-Martin, C (Paris VI)
  Some properties of Wishart processes Sem 1
10:00-11:00 Hudson, R (Nottingham Trent)
  Some noncommutative central limit theorums Sem 1
11:00-12:00 Petz, D (Budapest)
  Free transportation cost inequalities via random matrix approximation Sem 1
12:00-13:00 Stolz, M (Bochum)
  Examples of dual pairs in random matrix theory Sem 1
13:00-14:00 Warren, J (Warwick)
  Dyson's Brownian motion, interlacing and intertwining Sem 1
Friday 21 May
09:00-10:00 Doumerc, Y (Toulouse)
  Exit problems associated with finite reflection groups Sem 1
10:00-11:00 Fyodorov, Y (Brunel)
  Complexity of random energy landscapes, glass transition and absolute value of spectral determinant of random matrices Sem 1
11:00-12:00 Imamura, T (Tokyo)
  Fluctuations of the 1D polynuclear growth model with external sources Sem 1
12:00-13:00 Johansson, K (Stockholm)
  Universality of distributions from random matrix theory Sem 1
13:00-14:00 Reffy, J (Budapest)
  Asymptotics of Haar unitaries and their truncation Sem 1
Thursday 27 May
14:30-15:30 Suhov, Y (Cambridge)
  Anderson localisation for multi-particle lattice systems Sem 1
16:00-17:00 Ozluk, A (Maine)
  Low-lying zeroes of quadratic L-functions Sem 1
Thursday 03 June
14:30-15:30 Perez-Abreu, V (CIMAT)
  Type G ensembles of random matrices Sem 1
16:00-17:00 Duenez, E (Johns Hopkins Univesity)
  Symmetry flipping in families of L-functions Sem 1
Thursday 10 June
16:00-17:00 Pastur, L (Paris)
  On the moments of traces of matrices of classical groups Sem 1
Thursday 17 June
14:30-15:30 Soshnikov, A (UC Davis)
  Poisson statistics for the largest eigenvalues in Wigner and sample covariance random matrices with heavy tails Sem 1
16:00-17:00 Shahshahani, M (Niavaran, Tehran)
  Triangulations of surfaces and distributing points on a sphere Sem 1
Tuesday 22 June
16:00-17:00 Its, A (Indiana)
  Painleve transcendents and random matrices Sem 2
Thursday 24 June
16:00-17:00 Hejhal, D (Minnesota)
  Multi-variate Gaussians for L-functions and applications to zeros Sem 1
Monday 28 June
09:30-10:25 Sarnak, P (Princeton)
  Quantum vesus classical fluctuations on the modular surface Sem 1
11:00-11:40 De Bievre, S (Lille)
  Long time propagation of coherent states under perturbed cat map dynamics Sem 1
11:50-12:30 Mezzadri, F (Bristol)
  Random matrix theory and entanglement in quantum spin chains Sem 1
14:30-15:25 Nonnenmacher, S (CEA Saclay)
  Evolution and constrains on scarring for (perturbed) cat maps Sem 1
16:00-16:40 Hughes, C (AIM)
  On the number of lattice points in a thin annulus Sem 1
16:50-17:30 Anantharaman, N (Lyon)
  The ``Quantum unique ergodicity" problem for anosov geodesic flows: an approach by entropy Sem 1
Tuesday 29 June
09:30-10:25 Sieber, M (Bristol)
  Semiclassical evidence for universal spectral correlations in quantum chaos Sem 1
11:00-11:40 Schubert, R (Bristol)
  Propagation of wavepackets for large times Sem 1
11:50-12:30 Kurlberg, P (Chalmers)
  On the distribution of matrix elements for the quantum cat map Sem 1
14:30-15:25 Venkatesh, A (MIT)
  Quantum chaos on locally symmetric spaces Sem 1
16:00-16:40 Petridis, Y (New York)
  On the remiainder in weyl's law for heisenberg manifolds Sem 1
16:50-17:30 Müller, S (Essen)
  Semiclassical foundation of universality in quantum chaos Sem 1
Wednesday 30 June
09:30-10:25 Eskin, A (Chicago)
  Classical dynamics of billiards in rational polygons Sem 1
11:00-11:40 Degli Esposti, M (Bologna)
  The triangle map: a model for quantum chaos Sem 1
11:50-12:30 Keating, JP (Bristol)
  Eigenfunction statistics for star graphs Sem 1
Thursday 01 July
09:30-10:25 Rudnick, Z (Tel-Aviv)
  A central limit theorem for the spectrum of the modular domain Sem 1
11:00-11:40 Reznikov, A (Bar-IIan Univestity)
  Subconvexity of L-functions and the uniqueness principle Sem 1
11:50-12:30 Jakobson, D (McGill)
  On distribution of zeros of Heine-Stieltjes polynomials Sem 1
14:30-15:25 Zelditch, S (Johns Hopkins)
  Complex zeros of real ergodic eigenfunctions Sem 1
16:00-16:40 Toth, J (McGill)
  Energy asymptotics for gaudin spin chains Sem 1
Friday 02 July
09:30-10:25 Steiner, F (Ulm)
  The cosmic microwave background and the shape of the Universe Sem 1
11:00-11:40 Luo, W (Ohio)
  Zeros of the derivative of a selberg zeta function Sem 1
11:50-12:30 Strombergsson, A (Uppsala)
  Numerical computations with the trace formula and the selberg eigenvalue conjecture Sem 1
14:30-15:25 Zirnbauer, MR (Uni Koeln)
  Granular bosonization (or Fyodorov meets SUSY) Sem 1
16:00-16:40 Koyama, S (Keio)
  The double Riemann zeta function Sem 1
16:50-17:30 Gamburd, A (Stanford)
  Expander graphs, random matrices and quantum chaos Sem 1
Thursday 08 July
14:30-15:30 Granville, A (Montreal)
  Uncertainty principles in arithmetic Sem 1
16:00-17:00 Green, B (Univ of British Columbia)
  Arithmetic progressions of primes Sem 1
Monday 12 July
11:00-11:45 Hughes, C (AIM)
  Mollified \& amplified moments: Some new theorems \& conjectures Sem 1
12:00-12:30 Montgomery, H (Michigan)
  Primes \& pair correlation of zeros Sem 1
14:30-15:00 Ivic, A (Belgrade)
  On the moments of Hecke series at central points Sem 1
15:00-15:30 Jutila, M (Turku)
  The twelth moment of central values of Hecke series Sem 1
16:00-16:45 Diaconis, P (Stanford)
  Testing random matrix theory vs the zeta zeros Sem 1
17:00-17:30 Bump, D (Stanford)
  Automorphic summation formulae and moments of zeta Sem 1
17:30-18:00 Smolyarenko, I (Cambridge)
  Parametric RMT, discrete symmetries, \& cross-correlations between zeros of L-functions Sem 1
Tuesday 13 July
09:30-10:20 Kowalski, E (Bordeaux I)
  A survey of elliptic curves Sem 1
11:00-11:45 Soundararajan, K (Michigan)
  Extreme values \& moments of L-functions Sem 1
12:00-12:30 Booker, A (Paris-Sud)
  Poles of L-functions \& the converse theorem Sem 1
14:30-15:20 Sarnak, P (Princeton)
  Perspectives on L functions and spectral theory Sem 1
16:00-16:45 Keating, J (Bristol)
  Negative moments Sem 1
20:30-18:00 Lenstra Jr., H (Leiden)
  Escher and the Droste effect Sem 1
Wednesday 14 July
09:30-10:20 Ulmer, D (Arizona)
  Introduction to function fields Sem 1
11:00-11:45 Katz, N (Princeton)
  Random matrix theory \& life over finite fields Sem 1
12:00-12:30 Duenez, E (Texas)
  Symmetry beyond root numbers: a GL(6) example (joint with S Miller) Sem 1
Thursday 15 July
09:30-10:20 Rodriguez-Villegas, F (Texas)
  Computing twisted central values of L-functions Sem 1
11:00-11:45 Farmer, D (AIM)
  The geometry of zeros Sem 1
12:00-12:30 Nikeghbali, A (Pierre et Marie Curie)
  Zeros of random polynomials \& linear combinations of random characteristic polynomials Sem 1
14:30-15:20 Rubinstein, M (Waterloo)
  Experiments in number theory \& random matrix theory Sem 1
16:00-16:45 Gonek, S (Rochester)
  A new statistical model of the Riemann zeta function Sem 1
Friday 16 July
09:30-10:20 Gamburd, A (Stanford)
  Applications of symmetric functions theory to random matrices Sem 1
11:00-11:45 Zirnbauer, M (Köln)
  Ratios of random characteristic polynomials from supersymmetry Sem 1
12:00-12:30 David, C (Concordia)
  Vanishing of L-functions of elliptic curves over number fields Sem 1
14:30-15:20 Goldfeld, D (Columbia)
  Multiple Dirichlet series, an historical survey Sem 1
16:00-16:45 Snaith, N (Bristol)
  Ratios of zeta functions \& characteristic polynomials Sem 1
17:00-17:30 Perelli, A (Genova)
  The Selberg class of L-functions: non-linear twists Sem 1
17:30-17:50 Molteni, G (Milan)
  Bounds at s=1 for an axiomatic class of L-functions Sem 1
Other Seminars
Seminars in the University
National and International Scientific Research Meetings

Back to top ∧