Skip to content



Elliptic equations in open subsets of infinite dimensional Hilbert spaces

Da Prato, G (Pisa)
Monday 04 January 2010, 10:00-11:00

Seminar Room 1, Newton Institute


We consider the equation $$ \lambda \phi -L\phi = f $$ where $\lambda \geq 0$; and L is the Ornstein-Uhlenbeck operator defined in an open subset O of a Hilbert space H, equipped with Dirichlet or Neumann boundary conditions on the boundary of O. We discuss some existence and regularity results of the solution u of the above equation when the given function f belongs to the $L^2(O; \mu)$ and $\mu$ is the invariant measure of L.


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧