### A unified view of topological invariants of barotropic & baroclinic fluids & their application to formal stability analysis of three-dimensional ideal gas flows

Fukumoto, Y; Sakuma, H *(Kyushu University & Japan Agency for Marine-Earth Science and Technology)*

Friday 27 July 2012, 11:45-12:05

Seminar Room 1, Newton Institute

#### Abstract

Integrals of an arbitrary function of the vorticity, two-dimensional topological invariants of an ideal barotropic fluid, take different guise from the helicity. Noether's theorem associated with the particle relabeling symmetry group leads us to a unified view that all the topological invariants of a barotropic fluid are variants of the cross helicity. Baroclinic fluid flows admit, as the Casimir invariants, a class of integrals including an arbitrary function of the entropy and the potential vorticity. A consideration is given to them from the view point of Noether's theorem. We then develop a new energy-Casimir convexity method for a baroclinic fluid, and establish a novel linear stability criterion, to three-dimensional disturbances, for equilibria of general rotating flows of an ideal gas without appealing to the Boussinesq approximation. By exploiting a larger class of the Casimir invariants, we have succeeded in ruling out a term including the gradient of a dep endent variable from the energy-Casimir function. For zonally symmetric flows, the resulting criterion is regarded as an extended Richardson number criterion for stratified rotating shear flows with compressibility taken into account.

#### Presentation

#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

## Comments

Start the discussion!