### An algebraic classification of entangled states

**Buniy, R **

Thursday 16 August 2012, 11:30-12:30

Seminar Room 2, Newton Institute Gatehouse

#### Abstract

We provide a classification of entangled states that uses new discrete entanglement invariants. The invariants are defined by algebraic properties of linear maps associated with the states. We prove a theorem on a correspondence between the invariants and sets of equivalent classes of entangled states. The new method works for an arbitrary finite number of finite-dimensional state subspaces. As an application of the method, we considered a large selection of cases of three subspaces of various dimensions. We also obtain an entanglement classification of four qubits, where we find 27 fundamental sets of classes.

#### Presentation

#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

## Comments

Start the discussion!