skip to content

Aspects of the algebraic structure of groups definable in o-minimal structures

Presented by: 
M Otero [Madrid]
Tuesday 12th July 2005 - 14:30 to 15:30
INI Seminar Room 1

Let M be an o-minimal expansion of a real closed field. A definable group is a group that both the set and the graph of the operation are definable in M. Let G be a closed and bounded definable group. I will show the following:

(1) G is divisible if and only if G is definably connected.

(2) (Joint work with M.Edmundo) If G is abelian then the group structure of the torsion subgroups of G is determined.

Both proofs require the understanding of the o-minimal cohomology algebra of G.

I will also discuss the role played by the o-minimal Euler characteristic in aspects of the algebraic structure of definable groups.

Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons