skip to content

Conservation of energy and actions in numerical discretizations of nonlinear wave equations

Tuesday 27th March 2007 - 09:45 to 10:30
INI Seminar Room 1
Session Chair: 
A Iserles

For numerical discretizations of nonlinearly perturbed wave equations the long-time near-conservation of energy, momentum, and harmonic actions is studied. The proofs are based on the technique of modulated Fourier expansions in time. Rigorous statements on the long-time conservation properties are shown under suitable numerical non-resonance conditions and under a CFL condition. The time step need not be small compared to the inverse of the largest frequency in the space-discretized system.

This is joint work with Christian Lubich and David Cohen.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons