skip to content

Partitions, matrix models, and geometry

Monday 21st April 2008 - 10:00 to 11:00
INI Seminar Room 1

Sums of partitions with the Plancherel measure appear in various problems of statistical physics and mathematics (crystal growth, point processes, Gromov-Witten invariants). We rewrite such sums as matrix integrals, which allow to compute their large size expansion to all orders. The coefficients in the expansion are geometric objects called symplectic invariants of spectral curves. This makes a link between combinatorics of partitions, matrix models, algebraic geometry, integrability, quantum field theory and topological string theory.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons