skip to content
 

Approximation of functional spatial regression models using bivariate splines

Date: 
Thursday 5th June 2008 - 11:00 to 12:00
Venue: 
INI Seminar Room 1
Abstract: 

We consider the functional linear regression model where the explanatory variable is a random surface and the response is a real random variable, with bounded or normal noise. Bivariate splines over triangulations represent the random surfaces. We use this representation to construct least squares estimators of the regression function with or without a penalization term. Under the assumptions that the regressors in the sample are bounded and span a large enough space of functions, bivariate splines approximation properties yield the consistency of the estimators. Simulations demonstrate the quality of the asymptotic properties on a realistic domain. We also carry out an aplication to ozone forecasting over the US that illustrates the predictive skills of the method.

This is joint work with Ming-Jun Lai.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons