skip to content
 

Towards patient-specific simulations of atrial fibrillation

Presented by: 
F Weber [Karlsruhe (TH)]
Date: 
Thursday 23rd July 2009 - 14:30 to 14:45
Venue: 
INI Seminar Room 1
Session Title: 
Human Translation
Session Chair: 
Nic Smith
Abstract: 
Patient-specific cardiac simulations are approaching clinical applications. They could for example improve the treatment of atrial fibrillation (AF). Currently, many patients suffering from AF are treated with minimally-invasive catheter ablation. Using this technique, trigger sources for AF (mainly the pulmonary veins), are electrically isolated from the rest of the atrium. However, a large set of different ablation strategies is currently used in clinical practice. Therefore, the choice of a certain ablation strategy as well as the probability for successful and sustained AF termination are strongly dependent on the experience of the cardiologist. Atrial simulations could assist the cardiologist in the choice of a suitable method for an individual patient. For this, the atrial models have to be adapted to the patient. Besides anatomical modeling, several challenges must be faced in this process. First, an appropriate model of cellular electrophysiology and excitation conduction must be chosen. The model must provide the necessary accuracy and at the same time be fast enough for clinical applications. As a trade-off between accuracy and speed, we propose a minimal model adapted to atrial electrophysiology. Second, a main problem is the adaptation of physiological parameters in the patient-specific model as well as its validation. Therefore, an interface between clinical data and the model is needed. Data collected in standard clinical workflow are mainly intracardiac catheter ECGs. We therefore present techniques to model such catheter measurements. Signals from both circular mapping catheters (such as Lasso or Orbiter) as well as Coronary Sinus catheters can be simulated and compared to clinical signals. These are important steps towards clinical applications of atrial models. The long-term goal then is to assist the cardiologist in the choice of the best treatment for an individual patient.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute The Leverhulme Trust London Mathematical Society Microsoft Research NM Rothschild and Sons