skip to content

Personalised electromechanical model of the heart for the prediction of the acute effects of cardiac resynchronisation therapy

Thursday 23rd July 2009 - 15:45 to 16:00
INI Seminar Room 1
Session Title: 
Human Translation 2
Session Chair: 
Nic Smith
Cardiac resynchronisation therapy (CRT) has been shown to be an effective adjunctive treatment for patients with dyssynchronous ventricular contraction and symptoms of the heart failure. However, clinical trials have also demonstrated that up to 30% of patients may be classified as non-responders. In this article, we present how the personalisation of an electromechanical model of the myocardium could help the therapy planning for CRT. We describe the four main components of our myocardial model, namely the anatomy, the electrophysiology, the kinematics and the mechanics. For each of these components we combine prior knowledge and observable parameters in order to personalise these models to patient data. Then the acute effects of a pacemaker on the cardiac function are predicted with the in silico model on a clinical case. This is a proof of concept of the potential of virtual physiological models to better select and plan the therapy.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons