skip to content
 

Dirichlet to Neumann Maps for Infinite Metric Graphs

Date: 
Thursday 29th July 2010 - 14:45 to 15:30
Venue: 
INI Seminar Room 1
Abstract: 
Motivated by problems of modeling the human circulatory system, boundary value problems for differential operators -D2 + q are considered on the metric completions of infinite graphs with finite volume, finite diameter, or other smallness conditions. For a large family of graphs, the existence of an ample family of simple test functions permits a generalized definition of the Dirichlet to Neumann map taking boundary functions to their normal derivatives. Properties of this map, problems exhibiting more regular derivatives, and approximation by finite subgraphs will be discussed.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons