skip to content

Hodge polynomials of the moduli space of SL (2,C) - character varieties

Thursday 3rd February 2011 - 15:30 to 16:30
INI Seminar Room 1
Let X be a compact Riemann surface of genus g. SL(2,C)-character varieties of X are rich objects which lie in the intersection of algebraic geometry, complex geometry, and differential geometry. While they are diffeomorphic to moduli spaces of Higgs bundles, as algebraic varieties they are very different. Character varieties are affine, while Higgs moduli spaces are foliated by the fibers of the Hitchin map which are compact algebraic subvarieties. There has been much work investigating the mixed Hodge structures on the cohomology groups of these character varieties, and their Hodge polynomials have been computed using number theoretical techniques. Our goal is to compute the Hodge polynomial of SL(2,C)-character varieties, by stratifying these spaces in such a way that Hodge structure theory gives simpler formulas for the strata, so we are allowed to compute the whole polynomials in terms of the Hodge polynomials of the strata. This is work in progress with V. Muñoz and P. Newstead.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons