skip to content
 

Bridgeland stability conditions on threefolds and birational geometry

Presented by: 
A Bayer [Connecticut]
Date: 
Monday 4th April 2011 - 14:00 to 15:00
Venue: 
INI Seminar Room 1
Abstract: 
I will explain a conjectural construction of Bridgeland stability conditions on smooth projective threefolds. It is based on a construction of new t-structures. They produce a stability condition if we assume a conjectural Bogomolov-Gieseker type inequality for the Chern character of certain stable complexes. In this talk, I will present evidence for our conjecture, as well as implications of the conjecture to the birational geometry of threefolds. In particular, it implies a weaker version of Fujita's conjecture. This is based on joint work with Aaron Bertram, Emanuele Macrì and Yukinobu Toda.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute The Leverhulme Trust London Mathematical Society Microsoft Research NM Rothschild and Sons