skip to content

Ribbon Graphs and Mirror Symmetry

Wednesday 13th April 2011 - 16:30 to 17:30
INI Seminar Room 1
Beginning with a ribbon graph with some extra structure, I will define a dg category, the "constructible plumbing model," which serves as a stand-in for the Fukaya category of the Riemann surface associated to the ribbon graph. When the graph has a combinatorial version of a torus fibration with section, I will define a one-dimensional algebraic curve, and prove that the dg category of vector bundles on the curve is equivalent to the constructible plumbing model, a version of homological mirror symmetry in one-dimension. I will also discuss the higher-dimensional case.

This talk is based on joint work with Nicolo' Sibilla and David Treumann.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons