skip to content

Partially positive line bundles

Thursday 12th May 2011 - 10:30 to 11:30
INI Seminar Room 1
Define a line bundle L on a projective variety to be q-ample, for a natural number q, if tensoring with high powers of L kills coherent sheaf cohomology above dimension q. Thus 0-ampleness is the usual notion of ampleness. Intuitively, a line bundle is q-ample if it is positive "in all but at most q directions". We prove some of the basic properties of q-ample line bundles. Related ideas have been used by Ottem to define what an "ample subvariety" of any codimension should mean.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons