skip to content

Linear stability and stability of dual span bundles

Thursday 9th June 2011 - 15:30 to 16:30
INI Seminar Room 1
Dual span bundles have been constructed and used on many different purposes in algebraic geometry. The stability of these bundles has been proven in many cases and with different applications, from normal generation to the studying of the Picard sheaf, from the investigation on generalized theta-divisors, to that of coherent systems and Brill-Noether loci. We discuss about a work in progress with Lidia Stoppino, relating the stability of these bundles to the linear stability of linear systems on curves as defined by Mumford, providing some questions, some examples, few answers, and illustrating some connection with Butler's conjecture on stability of dual span bundles.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons