skip to content
 

Compactifications of reductive groups as moduli stacks of bundles

Presented by: 
J Martens [Aarhus]
Date: 
Monday 27th June 2011 - 15:20 to 15:50
Venue: 
INI Seminar Room 1
Abstract: 
Given a reductive group G, we introduce a class of moduli problems of framed principal G-bundles on chains of projective lines. Their moduli stacks provide equivariant toroidal compactifications of G. All toric orbifolds are examples of this construction, as are the wonderful compactifications of adjoint groups of De Concini-Procesi. As an additional benefit, we show that every semi-simple group has a canonical orbifold compactification. We further indicate the connection with non-abelian symplectic cutting and the Losev-Manin spaces. This is joint work with Michael Thaddeus (Columbia U).
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons