skip to content

Lecture on modelling: Mixed effects non-linear and generalized linear models

Presented by: 
D Bates [Wisconsin-Madison]
Tuesday 9th August 2011 - 09:30 to 10:30
INI Seminar Room 1
Session Chair: 
B. Bogacka
Mixed-effects models are defined by the distributions of two vector-valued random variables, an n-dimensional response vector, Y and an unobserved q-dimensional random-effects vector, B. The mean of the conditional distribution, Y|B=b, depends on a linear predictor expression of the form Xß+Zb where ß is a p-dimensional fixed-effects parameter vector and the fixed and known model matrices, X and Z, are of the appropriate dimension. For linear mixed-effects models the conditional mean is the linear predictor; for generalized linear mixed-effects models the conditional mean is the value of an inverse link function applied to the linear predictor and for a nonlinear mixed-effects model the conditional mean is the result of applying a nonlinear model function for which the parameter vector is derived from the linear predictor. We describe the formulation of these mixed-effects models and provide computationally effective expressions for the profiled deviance function through which the maximum likelihood parameter estimates can be determined. In the case of the linear mixed-effects model the profiled deviance expression is exact. For generalized linear or nonlinear mixed-effects models the profiled deviance is approximated, either through a Laplace approximation or, at the expense of somewhat greater computational effort, through adaptive Gauss-Hermite quadrature.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons