By moving to WTP-space, authors have tried to improve the estimation of WTP and its distribution from a modeling perspective. In this paper we will further improve the estimation of individual level WTP and corresponding heterogeneity distribution by designing the choice sets more efficiently. We will generate individual sequential choice designs in WTP space. The use of this sequential approach is motivated by findings of Yu et al. (2011) who show that this approach allows for superior estimation of the utility coefficients and their distribution. The key feature of this approach is that it uses Bayesian methods to generate individually optimized choice sets sequentially based on prior information of each individual which is further updated after each choice made. Based on a simulation study in which we compare the efficiency of this sequential design procedure with several non-sequential choice designs, we can conclude that the sequential approach improves the estimation results substantially.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.