skip to content

Quadratic Span Programs for Succinct NIZKs without PCPs

Presented by: 
C Gentry IBM Research
Wednesday 11th April 2012 - 14:30 to 15:30
INI Seminar Room 1
We introduce a new characterization of the NP complexity class, called "Quadratic Span Programs" (QSPs), which is a natural extension of "span programs" by Karchmer and Wigderson. Our main motivation is the construction of succinct arguments of NP-statements that are quickly constructible and verifiable. QSPs seem well-suited for this task, perhaps even better than Probabilistically Checkable Proofs (PCPs). In 2010, Groth constructed a NIZK argument in the common reference string (CRS) model for Circuit-SAT consisting of only 42 elements in a bilinear group. Interestingly, his argument does not (explicitly) use PCPs. But his scheme has some disadvantages -- namely, the CRS size and prover computation are both quadratic in the circuit size. In 2011, Lipmaa reduced the CRS size to quasi-linear, but with prover computation still quadratic. Using QSPs we construct a NIZK argument in the CRS model for Circuit-SAT consisting of just 7 group elements. The CRS size is linear in the circuit size, and prover computation is quasi-linear, making our scheme seemingly quite practical. (The prover only needs to do a linear number of group operations; the quasi-linear computation is a multipoint evaluation.) Our results are complementary to those of Valiant (TCC 2008) and Bitansky et al. (2012), who use ``bootstrapping" (recursive composition) of arguments to reduce CRS size and prover and verifier computation. QSPs also provide a crisp mathematical abstraction of some of the techniques underlying Groth's and Lipmaa's constructions. Joint work with Rosario Gennaro, Bryan Parno, and Mariana Raykova.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons