skip to content
 

Overcoming Weak Expectations

Presented by: 
Y Dodis [New York]
Date: 
Friday 13th April 2012 - 14:30 to 15:30
Venue: 
INI Seminar Room 1
Abstract: 
Recently, there has been renewed interest in basing cryptographic primitives on weak secrets, where the only information about the secret is some non-trivial amount of (min-)entropy. From a formal point of view, such results require to upper bound the expectation of some function f(X), where X is a weak source in question. We show an elementary inequality which essentially upper bounds such 'weak expectation' by two terms, the first of which is *independent* of f, while the second only depends on the 'variance' of f under *uniform* distribution. Quite remarkably, as relatively simple corollaries of this elementary inequality, we obtain some 'unexpected' results, in several cases noticeably simplifying/improving prior techniques for the same problem. Examples include non-malleable extractors, leakage-resilient symmetric encryption, seed-dependent condensers and improved entropy loss for the leftover hash lemma.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons