skip to content

Schnorr triviality is equivalent to being a basis for tt-Schnorr randomness

Presented by: 
K Miyabe Kyoto University
Monday 2nd July 2012 - 15:00 to 15:30
INI Seminar Room 1
We present some new characterizations of Schnorr triviality. Schnorr triviality is defined using complexity via a computable measure machine, with which Schnorr randomness has a characterization. Since we have a characterization of Schnorr randomness via decidable prefix-free machine, we also have a characterization of Schnorr triviality using complexity via a decidable prefix-free machine. It should be noted that numerous characterizations of Schnorr triviality have the following form: for any computable object, there exists another computable object such that the real is in some object. By defining a basis for Schnorr randomness in a similar manner, we can show the equivalence to Schnorr triviality while Franklin and Stephan (2010) showed that there exists a Schnorr trivial set that is not truth-table reducible to any Schnorr random set.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons