skip to content

A Framework for the Development of Computable Error Bounds for Finite Element Approximations

Friday 24th August 2012 - 09:00 to 10:00
INI Seminar Room 1
We present an overview of our recent work on the development of fully computable upper bounds for the discretisation error measured in the natural (energy) norm for a variety of problems including linear elasticity, convection-diffusion-reaction and Stokes flow in three space dimensions. The upper bounds are genuine upper bounds in the sense that the actual numerical value of the estimated error exceeds the actual numerical value of the true error regardless of the coarseness of the mesh or the nature of the data for the problem, and are applicable to a variety of discretisation schemes including conforming, non-conforming and discontinuous Galerkin finite element schemes. All constants appearing in the bounds are fully specified. Numerical examples show the estimators are reliable and accurate even in the case of complicated three dimensional problems, and are suitable for driving adaptive finite element solution algorithms.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons