skip to content

Second-order conservative remapping between unstructured spherical meshes

Presented by: 
Evaggelos Kritsikis Laboratoire des Sciences du Climat et l'Environnement (LSCE)
Tuesday 25th September 2012 - 17:00 to 17:25
INI Seminar Room 1
Remapping from one finite-dimensional description of a function to another is a common problem in numerical modelling. In particular, information transit between meshes is required for, e.g., model coupling or mesh adaptation. In order to preserve the properties of a numerical scheme such as conservativity, accuracy, positivity, etc., the remapping algorithm must itself possess these properties. A second-order, conservative remapping between unstructured spherical meshes is presented. Areas are computed exactly by the defect formula and gradients estimated by the Gauss formula. Data is tree-structured, so that neighbour search is done in logarithmic time. In addition, the algorithm lends itself well to parallelisation. Numerical tests on various unstructured grids are given.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute The Leverhulme Trust London Mathematical Society Microsoft Research NM Rothschild and Sons