skip to content

On the cubic instability in the Q-tensor theory of nematics

Wednesday 9th January 2013 - 10:00 to 10:40
INI Seminar Room 1
Symmetry considerations, as well as compatibility with the Oseen-Frank theory, require the presence of a cubic term (involving spatial derivatives) in the Q-tensor energy functional used for describing variationally the nematics. However the presence of the cubic term makes the energy functional unbounded from below.

We propose a dynamical approach for addressing this issue, namely to consider the L^2 gradient flow generated by the energy functional and show that the energy is dynamically bounded, namely if one starts with a bounded, suitable, energy then the energy stays bounded in time. We discuss notions of suitability which are related to the preservation of a physical constraint on the eigenvalues of the Q-tensors (without using the Ball-Majumdar singular potential).

This is joint work with G. Iyer and X. Xu (Carnegie-Mellon).

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons