skip to content
 

Free energy according to Poincare' and Landau

Date: 
Friday 11th January 2013 - 10:20 to 11:00
Venue: 
INI Seminar Room 1
Abstract: 
In the Landau theory of phase transitions one considers an effective potential U whose symmetry group G and degree d depend on the system under consideration; generally speaking, U is the most general G-invariant polynomial of degree d. When such a U turns out to be too complicate for a direct analysis, it is essential to be able to drop unessential terms, i.e., to apply a simplifying criterion. Criteria based on singularity theory exist and have a rigorous foundation, but are often very difficult to apply in practice. Here we consider a simplifying criterion and rigorously justify it on the basis of classical Lie-Poincare theory; this builds on (and justifies) a proposal by Gufan.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons