skip to content
 

The Boardman-Vogt tensor product of operadic bimodules

Date: 
Wednesday 3rd April 2013 - 15:00 to 16:00
Venue: 
INI Seminar Room 1
Abstract: 
(Joint work with Bill Dwyer.) The Boardman-Vogt tensor product of operads endows the category of operads with a symmetric monoidal structure that codifies interchanging algebraic structures. In this talk I will explain how to lift the Boardman-Vogt tensor product to the category of composition bimodules over operads. I will also sketch two geometric applications of the lifted B-V tensor product, to building models for spaces of long links and for configuration spaces in product manifolds.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons