skip to content

Honorary MZVs and modular forms

Monday 8th April 2013 - 11:00 to 12:00
INI Seminar Room 1
$\sum_{a>b>c>d>e>0}(-1)^{b+d}/(a^3b^6c^3d^6e^3)$ is an alternating sum with weight 21 and depth 5, yet has a conjectural expression as a Q-linear combination of multiple zeta values (MZVs) that includes a sum of depth 7. The MZV Data Mine [arXiv:0907.2557] contains many other examples of "honorary MZVs", i.e. alternating sums that are reducible to MZVs, sometimes at the expense of an increase of depth by an even integer. This talk concerns the conjecture that the enumeration of MZVs that are not reducible to MZVs of lesser depth, yet are reducible to alternating sums of lesser depth, is generated by an enumeration of modular forms.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons