skip to content

A shuffle product formula for generalized iterated integrals

Tuesday 9th April 2013 - 15:00 to 16:00
INI Seminar Room 1
In generalized iterated integrals, one can integrate complex powers of certain holomorphic 1-forms on Riemann surfaces. In this talk, I will present a shuffle product formula on such integrals. Applications will include expressions of Dedekind zeta functions of abelian number fields as series of certain polyzeta functions, as well as identities involving the Riemann zeta function.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons