skip to content
 

Spontaneous flows and defect proliferation in active nematic liquid crystals

Presented by: 
MC Marchetti Syracuse University
Date: 
Wednesday 10th April 2013 - 10:00 to 11:00
Abstract: 
Active liquid crystals are nonequilibrium fluids composed of internally driven elongated units. Examples include mixtures of cytoskeletal filaments and associated motor proteins, bacterial suspensions, the cell cytoskeleton and even non-living analogues, such as monolayers of vibrated granular rods. Due to the internal drive, these systems exhibit a host of nonequilibrium phenomena, including spontaneous laminar flow, large density fluctuations, unusual rheological properties, excitability, and low Reynolds number turbulence. In this talk I will review some of this phenomena and discuss new results on the dynamics and proliferation of topological defects in active liquid crystals. A simple analytical model for the defect dynamics will be shown to reproduce the key features of recent experiments in microtubule-kinesin assemblies.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute The Leverhulme Trust London Mathematical Society Microsoft Research NM Rothschild and Sons