skip to content

Anatomy of the motivic Lie algebra

Thursday 11th April 2013 - 09:30 to 10:30
INI Seminar Room 1
The motivic Lie algebra is contained in the Grothendieck-Teichmuller Lie algebra, and is isomorphic to the free graded Lie algebra with one generator in every odd degree >1. Using motivic MZV's one can define canonical generators for this algebra, but their arithmetic properties are very mysterious.

In this talk, I will explain how elements of the motivic Lie algebra admit a kind of Taylor expansion with a rich internal structure. This is closely connected with the theory of modular forms, universal elliptic motives, and some other unexpected algebraic objects.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons