skip to content

Physarum Polycephalum Percolation as a Paradigm for Topological Phase Transitions in Transportation Networks

Presented by: 
H-G Döbereiner Universität Bremen
Wednesday 26th June 2013 - 11:00 to 11:45
INI Seminar Room 1
We study the formation of transportation networks of the true slime mold Physarum polycephalum after fragmentation by shear. Small fragments, called microplasmodia, fuse to form macroplasmodia in a percolation transition. At this topological phase transition, one single giant component forms, connecting most of the previously isolated microplasmodia. Employing the configuration model of graph theory for small link degree, we have found analytically an exact solution for the phase transition.

The universality of percolation may be used as a general gauge in the analysis of transportation networks. Some malignant tissues derive their blood vessels not by angiogenesis, i.e., remodeling of existing vessels, but rather by denovo vascularization like embryos. Since topologically, percolation is independent from detailed mechanisms and even space dimensions, i.e., 2D versus 3D growth, it may serve as a reference point in space and time when comparing the dynamics of network formation in tumors of varying size and shape. Since restricting blood supply via hindering vessel percolation is paramount for suppressing tumor growth, this may foster development of antiangiogenic therapy.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons