skip to content
 

Algebraic and Geometric Ideas in Discrete Optimisation III

Presented by: 
J De Loera University of California, Davis
Date: 
Monday 15th July 2013 - 16:00 to 17:00
Venue: 
INI Seminar Room 1
Abstract: 
It is common knowledge that the understanding of the combinatorial geometry of convex bodies has helped speed up algorithms in discrete optimization. For example, cutting planes and facet-description of polyhedra have been crucial in the success of branch-and-bound algorithms for mixed integer linear programming. Another example, is how the ellipsoid method can be used to prove polynomiality results in combinatorial optimization. For the future, the importance of algebraic-combinatorial geometry in optimization appears even greater.

In the past 5 years advances in algebraic-geometric algorithms have been used to prove unexpected new results on the computation of non-linear integer programs. These lectures will introduce the audience to new techniques. I will describe several algorithms and explain why we can now prove theorems that were beyond our reach before, mostly about integer optimization with non-linear objectives. I will also describe attempts to turn these two algorithms into practical computation, not just in theoretical results.

This a nice story collecting results by various authors and now contained in our monograph recently published by SIAM-MOS.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute The Leverhulme Trust London Mathematical Society Microsoft Research NM Rothschild and Sons