skip to content

Revisiting several problems and algorithms in Continuous Location with l_p norms

Presented by: 
A El Haj Ben Ali Universidad de Sevilla
Friday 19th July 2013 - 10:30 to 11:00
INI Seminar Room 1
This work addresses the general continuous single facility location problems in finite dimension spaces under possibly diferent l_p norms, p>=1, in the demand points. We analyze the dificulty of this family of problems and revisit convergence properties of some well-known algorithms. The ultimate goal is to provide a common approach to solve the family of continuous l_p ordered median location problems in dimension d (including of course the l_p minisum or Fermat-Weber location problem for any p>=1). We prove that this approach has a polynomial worst case complexity for monotone lambda weights and can be also applied to constrained and even non-convex problems.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons