skip to content

On the Fluid Limits of a Resource Sharing Algorithm with Logarithmic Weights

Presented by: 
PH Robert
Monday 12th August 2013 - 10:00 to 10:45
INI Seminar Room 1
The properties of a class of resource allocation algorithms for communication networks are presented in this talk.The algorithm is as follows: if a node of this network has x requests to transmit, then it receives a fraction of the capacity proportional to log(x), the logarithm of its current load. A fluid scaling analysis of such a network is presented. It is shown that several different times scales play an important role in the evolution of such a system. An interesting interaction of time scales phenomenon is exhibited. It is also shown that these algorithms with logarithmics weights have remarkable, unsual, fairness properties. A heavy traffic limit theorem for the invariant distribution is proved. Joint work with Amandine Veber.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute The Leverhulme Trust London Mathematical Society Microsoft Research NM Rothschild and Sons