skip to content

Distances in large random regular networks

Presented by: 
J Salez Université Paris 7 - Denis-Diderot
Thursday 15th August 2013 - 11:00 to 11:45
INI Seminar Room 1
We study the array of point-to-point distances in large random regular graphs equipped with exponential edge-lengths. The asymptotic marginal distribution of a single entry is now well-understood, thanks to the work of Bhamidi, van der Hofstad and Hooghiemstra (2010). In this talk, we will show that the whole array, suitably recentered, converges in the weak sense to a rather simple infinite random array. This confirms a prediction of David Aldous.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons