skip to content

Self-organizing cellular automata

Thursday 15th August 2013 - 13:30 to 14:15
INI Seminar Room 1
Cellular automata display an extraordinary range of behavior, ranging from the very simple to the apparently chaotic, with many cases in between. Perhaps the most interesting rules are those that yield multiple behavior types from different initial conditions - this is common even for one-dimensional rules started from finitely-supported seeds. If a rule yields chaos from some initial conditions, it is tempting to conclude by analogy with the second law of thermodynamics that chaos should be prevalent from almost all initial conditions. For a certain natural class of rules, we prove that the opposite holds: typical (i.e. random) initial seeds self-organize into predictable (but non-trivial) evolution, while exceptional seeds generate more complicated behavior, including chaos. The key technique is the application of percolation arguments to the highly non-independent setting of space-time configurations of cellular automata.

Joint work with Janko Gravner.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons