skip to content
 

Epidemics and population structure: One step forward, and two steps back

Presented by: 
T House University of Warwick
Date: 
Tuesday 20th August 2013 - 09:00 to 09:30
Venue: 
INI Seminar Room 1
Session Title: 
Social Networks
Abstract: 
In general, the incorporation of population structure into epidemic models creates problems of dimensionality for prediction (the `forward problem'). Even for the `simple epidemic' / SI model, complete individual heterogeneity of n individuals leads to a dynamical system whose size grows like 2^n.

There are, however, two `inverse problems' where this curse becomes a blessing: for statistical inference, flat directions in parameter space can become identifiable once more stratification of data is available; and the presence of population structure allows a far wider range of control and mitigation strategies to be compared than are possible in a homogeneous system.

This talk will consider: (i) the generation of predictions from heterogeneous epidemic models without excessive dimensionality; (ii) the use of multiple stratified data sources to resolve statistical questions about the otherwise unidentifiable but epidemiologically important quantities; (iii) informing public health policy on the basis of these considerations. Real-world examples will come from the 2009 H1N1 influenza pandemic.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons