skip to content
 

Exponential Family Random Graph Models: A data-driven bridge between networks and epidemics

Date: 
Tuesday 20th August 2013 - 09:30 to 10:00
Venue: 
INI Seminar Room 1
Session Title: 
Social Networks
Abstract: 
Co-authors: Mark S.Handcock (University of California Los Angeles), David R. Hunter (Pennsylvania State University), Carter T. Butts (University of California Irvine), Steven M. Goodreau (University of Washington), Skye Bender-deMoll (At Large), Pavel Krivitsky (University of Woolongong)

In a small comment on the Mollison, Isham and Grenfell JRSS paper at the end of the Newton Workshop in 1994, I speculated on the potential for an emerging stochastic modeling framework to provide the missing link between network and epidemic modeling. Now, 30 years later, that link is firmly established. In this talk I will briefly summarize the theory of Exponential Family Random Graph Models (ERGMs), a comprehensive statistical framework that makes it possible to estimate generative parameters for network structure from a wide range of data, and simulate static or dynamic networks with the observed features. The talk will cover the extensive software available in the "statnet" related packages on CRAN and highlight some recent applications to epidemic modeling.

Related Links: •https://statnet.csde.washington.edu/trac - the statnet wiki •http://www.jstatsoft.org/v24/ - Journal of Statistical Software Volume on statnet (2008) •http://statnet.csde.washington.edu/movies/ - A network epidemiology movie

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons