skip to content
 

Mott physics, sign structure, and high-TC superconductivity

Date: 
Monday 16th September 2013 - 11:00 to 11:45
Venue: 
INI Seminar Room 1
Abstract: 
Fermion sign structure constitutes the foundation of the Landau’s Fermi liquid theory in condensed matter physics. But it will be fundamentally changed by the strong interaction in the so-called doped Mott insulator relevant to high-Tc cuprate materials. New novel sign structure as reduced Fermion signs will appear here, which can be precisely captured by a nonintegrable phase factor like emergent topological gauge fields in the simplest doped Mott insulators: the t-J and Hubbard models. The quantum interference of the altered Fermion signs will result in non-Fermi-liquid/non-BCS-type normal/superconducting phenomena, which may provide a systematical understanding of the anomalous properties observed in cuprate superconductors.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons