skip to content

Quantifying uncertainty and improving reduced-order predictions of partially observed turbulent dynamical systems

Presented by: 
M Branicki New York University
Tuesday 29th October 2013 -
13:40 to 14:15
INI Seminar Room 1
Co-author: A. J. Majda (Courant Institute, NYU)

The issue of mitigating model error in reduced-order prediction of high-dimensional dynamics is particularly important when dealing with turbulent geophysical systems with rough energy spectra and intermittency near the resolution cut-off of the corresponding numerical models. I will discuss a new framework which allows for information-theoretic quantification of uncertainty and mitigation of model error in imperfect stochastic/statistical predictions of non-Gaussian, multi-scale dynamics. In particular, I will outline the utility of this framework in derivation of a sufficient condition for improving imperfect predictions via a popular but heuristic Multi Model Ensemble approach. Time permitting, the role and validity of 'fluctuation-dissipation' arguments for improving imperfect predictions of externally perturbed non-autonomous turbulent systems will also be addressed.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons