skip to content
 

Inequalities for the Ranks of Quantum States

Presented by: 
J Cadney University of Bristol
Date: 
Wednesday 30th October 2013 -
14:00 to 15:00
Venue: 
INI Seminar Room 2
Abstract: 
We investigate relations between the ranks of marginals of multipartite quantum states. These are the Schmidt ranks across all possible bipartitions and constitute a natural quantification of multipartite entanglement dimensionality. We show that there exist inequalities constraining the possible distribution of ranks. This is analogous to the case of von Neumann entropy (\alpha-R\'enyi entropy for \alpha=1), where nontrivial inequalities constraining the distribution of entropies (such as e.g. strong subadditivity) are known. It was also recently discovered that all other \alpha-R\'enyi entropies for $\alpha\in(0,1)\cup(1,\infty)$ satisfy only one trivial linear inequality (non-negativity) and the distribution of entropies for $\alpha\in(0,1)$ is completely unconstrained beyond non-negativity. Our result resolves an important open question by showing that also the case of \alpha=0 (logarithm of the rank) is restricted by nontrivial linear relations and thus the cases of von Neumann entropy (i.e., \alpha=1) and 0-R\'enyi entropy are exceptionally interesting measures of entanglement in the multipartite setting.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons