skip to content

Partial sums of excursions along random geodesics.

Presented by: 
V Gadre University of Warwick
Tuesday 17th June 2014 - 11:30 to 12:30
INI Seminar Room 2
In the theory of continued fractions, Diamond and Vaaler showed the following strong law: for almost every expansion, the partial sum of first n coefficients minus the largest coefficient divided by n \log n tends to a limit. We will explain how this generalizes to non-uniform lattices in SL(2, R) with cusp excursions in the quotient hyperbolic surface generalizing continued fraction coefficients. The general theorem relies on the exponential mixing of geodesic flow, in particular on the fast decay of correlations due to Ratner. Analogously, similar theorems are true for the moduli space of Riemann surfaces.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons