skip to content

How microbial communities drove the evolution of the genetic code more than 3.8 billion years ago

Thursday 6th November 2014 - 15:00 to 16:00
INI Seminar Room 2
Relics of early life, preceding even the last universal common ancestor of all life on Earth, are present in the structure of the modern day canonical genetic code --- the map between DNA sequence and amino acids that form proteins. The code is not random, as often assumed, but instead is now known to have certain error minimisation properties. How could such a code evolve, when it would seem that mutations to the code itself would cause the wrong proteins to be translated, thus killing the organism? Using digital life simulations, I show how a unique and optimal genetic code can emerge over evolutionary time, but only if horizontal gene transfer within early microbial communities --- a network effect --- was a much stronger characteristic of early life than it is now. These results suggest a natural scenario in which evolution exhibits three distinct dynamical regimes, differentiated respectively by the way in which information flow, genetic novelty and complexity emerge.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons