skip to content
 

Do U.S. Financial Regulators Listen to the Public? Testing the Regulatory Process with the RegRank algorithm

Date: 
Thursday 18th December 2014 - 16:30 to 17:15
Venue: 
INI Seminar Room 1
Abstract: 
Co-authors: Shawn Mankad (University of Maryland), George Michailidis (University of Michigan)

We examine the notice-and-comment process and its impact on influencing regulatory decisions by analyzing the text of public rule-making documents of the Commodity Futures Trading Commission (CFTC) and associated comments. For this task, we develop a data mining framework and an algorithm called RegRank, which learns the thematic structure of regulatory rules and public comments and then assigns tone weights to each theme to come up with an aggregate score for each document. Based on these scores we test the hypothesis that the CFTC adjusts the final rule issued in the direction of tone expressed in public comments. Our findings strongly support this hypothesis and further suggest that this mostly occurs in response to comments from the regulated financial industry. We posit that the RegRank algorithm and related text mining methods have the potential to empower the public to test whether it has been given the "due process" and hence keep government agencies in chec k.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons