skip to content

Performing computation with DNA

Presented by: 
Neil Dalchau Microsoft Research
Thursday 21st January 2016 - 14:15 to 15:00
INI Seminar Room 1
The development of technology to read and write DNA quickly and cheaply is enabling new opportunities for programming biological systems. One example of this is DNA computing, a field devoted to implementing computation in purely biological materials. The hope is that this would enable computation to be performed inside cells, which could pave the way for so-called “smart therapeutics”. Naturally, what we have learned in computer science can be applied to DNA computing systems, and has enabled the implementation of a wide variety of examples of performing computation. Examples include DNA circuits for computing a square root, implementing artificial neural networks, and a general scheme for describing arbitrary chemical reaction networks (CRNs), which itself can be thought of as a compiler.

We have used such a CRN compiler of DNA circuitry to implement the approximate majority (AM) algorithm, which seeks to determine the initial majority of a population of agents holding different beliefs. In its simplest form, the algorithm can be described by three chemical reactions. In this talk, I will describe how we implemented, characterized and modelled a purely DNA implementation of the AM reactions. Along the way, I will demonstrate our software platform for programming biological computation. The platform brings together a variety of stochastic methods that are relevant for both programming and understanding biochemical systems, including stochastic simulation, integration of the chemical master equation, a linear noise approximation, and Markov chain Monte Carlo methods for parameter inference. I will also show preliminary work on synthesizing CRNs with specified probabilistic behaviours.

Related Links
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons