skip to content

Estimating network edge probabilities by neighborhood smoothing

Presented by: 
Elizaveta Levina University of Michigan
Thursday 14th July 2016 - 11:30 to 12:00
INI Seminar Room 1
Co-authors: Yuan Zhang (Ohio State University), Ji Zhu (University of Michigan)

The problem of estimating probabilities of network edges from the observed adjacency matrix has important applications to predicting missing links and network denoising. It has usually been addressed by estimating the graphon, a function that determines the matrix of edge probabilities, but is ill-defined without strong assumptions on the network structure. Here we propose a novel computationally efficient method based on neighborhood smoothing to estimate the expectation of the adjacency matrix directly, without making the strong structural assumptions graphon estimation requires. The neighborhood smoothing method requires little tuning, has a competitive mean-squared error rate, and outperforms many benchmark methods on the task of link prediction in both simulated and real networks.

Related Links
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons