skip to content

Generalisation for Adaptive Data Analysis

Presented by: 
Thomas Steinke IBM Research
Tuesday 22nd November 2016 - 15:30 to 16:30
INI Seminar Room 2
Adaptivity is an important aspect of data analysis -- that is, the choice of questions to ask about a dataset is often informed by previous use of the same dataset. However, statistical validity is typically only guaranteed in a non-adaptive model, in which the questions must be specified before the dataset is collected. A recent line of work initiated by Dwork et al. (STOC 2015) provides a formal model for studying the power of adaptive data analysis.   This talk will show that there are sophisticated techniques -- using tools from information theory and differential privacy -- that enable us to ensure that adaptive data analysis provides statistically valid answers that generalise to the overall population from which the dataset was drawn. This talk will also discuss how adaptive data analysis is inherently more powerful than non-adaptive data analysis, namely there is an exponential separation between the number of adaptive queries needed to overfit a dataset and the number of non-adaptive queries needed.  
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons